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Abstract. The electron captures by projectile ions from hydrogenic ions are investigated in strongly cou-
pled semiclassical plasmas. The electron capture radius by the projectile ion is obtained by the effective
screened pseudopotential model taking into account both the plasma screening and quantum effects. The
semiclassical version of the Bohr-Lindhard method is applied to obtain the electron capture probability.
The impact-parameter trajectory analysis is applied to the motion of the projectile ion in order to visu-
alize the electron capture radius and capture probability as functions of the impact parameter, thermal
de Broglie wavelength and Debye length. The results show that the quantum and plasma screening effects
significantly reduce the electron capture probability and the capture radius. It is found that the electron
capture position is shifted to the core of the projectile ion with increasing the thermal de Broglie wave-
length. It is also found that the quantum effects on the electron capture probability are more significant
than the collective screening effects on the electron capture probability. The electron capture probability
is found to be significantly increased with an increase of the charge.

PACS. 52.20.-j Elementary processes in plasmas

1 Introduction

The electron capture process [1–11] due to charged par-
ticle collisions has been of great interest since this pro-
cess is one of the most fundamental processes in atomic
physics. This electron capture process has been investi-
gated widely using various methods [1,9] depending on
the physical properties of the collision system. It has been
known that the Bohr-Lindhard method [2,6] is quite reli-
able for evaluating the electron capture cross-section when
the relative collision velocity vP of the projectile ion is
greater than the ground orbital velocity vZT (= ZT e2/�)
of the hydrogenic target ion with nuclear charge ZT . Re-
cently, the atomic collision and radiation processes in plas-
mas have been of great interest since these processes can
be used for plasma diagnostics [7,10]. It has been known
that the Debye-Hückel screened potential describes the
physical properties of a low density plasma and corre-
sponds to a pair correlation approximation [12]. Recently,
the importance of study of various physical properties of
strongly coupled plasmas such as the inertial confinement
fusion plasmas and the interiors of the astrophysical com-
pact objects has considerably increased. It is quite evi-
dent that the physical properties of matter existing un-
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der such strongly coupled plasmas differ radically from
the properties of weakly coupled ideal plasmas since the
Coulomb coupling parameter is greater than unity in these
strongly coupled plasmas. In addition, the interaction po-
tential in strongly coupled semiclassical plasmas cannot
be described by the Debye-Hückel type potential because
of strong nonideal particle interactions [13–20] due to the
collective plasma screening and quantum effects. This col-
lective effect is mainly caused by the many-body strong
correlation interactions in dense plasmas. Then, the elec-
tron capture processes in strongly coupled plasmas would
be quite different from those in weakly coupled ideal plas-
mas. Thus, in this paper we investigate electron cap-
ture processes by projectile ions from hydrogenic target
ions in strongly coupled semiclassical plasmas. The ana-
lytic pseudopotential model [20] including the quantum
effects and the collective plasma screening effects is ap-
plied to describe the interaction between the projectile ion
and the released electron in strongly coupled semiclassical
plasmas. The semiclassical version of the Bohr-Lindhard
model [8] is used to obtain the electron capture radius
and the electron capture probability including the collec-
tive plasma screening and quantum effects. The impact-
parameter trajectory analysis is applied to the path of the
projectile ion in order to visualize the quantum and col-
lective plasma screening effects on the electron capture
radius and probability as functions of the impact param-
eter, thermal de Broglie wavelength and Debye length.
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In Section 2, we discuss the semiclassical expression of
the electron capture cross-section. We obtain the analytic
expression of the electron capture radius by the projec-
tile ion from the hydrogenic target ion in strongly coupled
plasmas using the screened pseudopotential model. In Sec-
tion 3, we derive the closed form of the scaled electron
capture probability as a function of the impact parame-
ter, thermal de Broglie wavelength, Debye length, and col-
lision energy in accordance with the semiclassical version
of the Bohr-Lindhard method and the effective interaction
potential. We also investigate the variation of the scaled
electron capture probability with changing the physical
parameters of strongly coupled semiclassical plasmas. Fi-
nally, in Section 4, summary and discussions are given.

2 Capture radius

The cross-section σC for the electron capture process
can be obtained by the Bohr-Lindhard method and the
impact-parameter trajectory analysis [4]:

σC =
∫

d2bPC(b), (1)

where b is the impact parameter and PC(b) is the electron
capture probability. In the Bohr-Lindhard method [6], it
has been known that the electron capture happens when
the distance between the projectile ion and the released
electron is smaller than the electron capture radius RC .
This electron capture radius is usually determined by
equating the kinetic energy of the released electron in the
frame of the projectile ion and the binding energy pro-
vided by the projectile ion.

The pseudopotential models of the particle interac-
tion in strongly coupled plasmas have been proposed by
several authors [13,14,16,17,20]. Very recently, the ana-
lytic expression of the effective screened potential [20] of
the charged particle interaction in strongly coupled semi-
classical plasmas taking into account both the plasma
screening effects and the quantum effects of diffraction
has been obtained on the basis of the dielectric response
function analysis. Based on the screened pseudopotential
model [20], the interaction potential V (r) between the
projectile ion with nuclear charge ZP and the released
electron in strongly coupled semiclassical plasmas for the
region of 2λ < Λ would be represented as

V (r, λ, Λ) = − ZP e2√
1 − 4λ2/Λ2

[
e−A(λ,Λ)r

r
− e−B(λ,Λ)r

r

]
,

(2)
where λ (= �/

√
2πmkBT ) is the thermal de Broglie wave-

length, kB stands for the Boltzmann constant, T is the
plasma temperature, Λ is the Debye length, and the pa-
rameters A(λ, Λ) and B(λ, Λ) are, respectively, defined
as A2(λ, Λ) = (1 − √

1 − 4λ2/Λ2)/(2λ2) and B2(λ, Λ) =
(1 +

√
1 − 4λ2/Λ2)/(2λ2). This effective interaction po-

tential has been known to be reliable for strongly coupled
plasmas when the plasma density n ≈ 1020–1024 cm−3

and the temperature T ≈ 103–107 K, i.e., the plasma cou-
pled parameter Γ > 1 [20]. Then, the electron capture
radius RC in strongly coupled semiclassical plasmas can
be determined by the following relation:

ZP e2√
1 − 4λ2/Λ2

[
e−A(λ,Λ)RC

RC
− e−B(λ,Λ)RC

RC

]
∼= 1

2
mv2

P ,

(3)
since the kinetic energy of the released electron in the
frame of the projectile ion has to be smaller than the bind-
ing energy provided by the projectile proton, where m
is the electron mass and vP is the relative collision ve-
locity. Here, the perturbation analysis can be applied
to obtain the electron capture radius since the capture
radius is usually smaller than the Debye length Λ and
A(λ, Λ) � B(λ, Λ) for the domain 2λ < Λ in order to have
real values of the parameters A(λ, Λ) and B(λ, Λ). After
some algebra, the analytic form of the scaled electron cap-
ture radius (R̄C), i.e., the capture radius in units of aZP ,
including the collective plasma screening and quantum ef-
fects is then found to be

R̄C(Ē, λ̄, aΛ) = RC(Ē, λ̄, aΛ)/aZP ,

= ln
(
4 −

√
21 − 12F (Ē, λ̄, aΛ)

)
−1/B̄(λ̄,aΛ),

(4)

where aZP (≡ a0/ZP ) is the Bohr radius of the hydro-
genic ion with nuclear charge ZP , a0 (= �

2/me2) is the
Bohr radius of the hydrogen atom, Ē (≡ mv2

P /2Z2
PRy)

is the scaled collision energy, Ry (= me4/2�
2 ≈ 13.6 eV)

is the Rydberg constant, λ̄ (≡ λ/aZP ) is the scaled de
Broglie wavelength, aΛ (≡ aZp/Λ) is the scaled recipro-
cal Debye length, B̄(λ̄, aΛ) ≡ B(λ̄, aΛ)aZP , and the func-
tion F (Ē, λ̄, aΛ) is

F (Ē, λ̄, aΛ) =

(Ē/
√

2)λ̄
√

1 − (2λ̄aΛ)2 +
√

1 −
√

1 − (2λ̄aΛ)2√
1 +

√
1 − (2λ̄aΛ)2

. (5)

The dependence of the electron capture radius on the
collective plasma screening and quantum effects can be
investigated by equations (4) and (5) since the capture
radius is mainly determined by the kinetic energy and the
interaction potential in strongly coupled plasmas, i.e., the
classical over the barrier analysis [6].

3 Capture probability

Using the semiclassical version of the Bohr-Lindhard
method [6], the electron capture probability for the target
system with nuclear charge ZT is given by

PC =
∫

d3 rT
2tC

τ(rT )
|Ψ(rT )|2 , (6)
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where the electron release time τ(rT ) (∼= �/E(rT ) =
2r�/ZT e2) is given by the uncertainty principle, tC is
the electron capture time, Ψ(rT ) and is the wave func-
tion of the electron in the target ion. It is obvious that
the straight-line trajectory analysis is more reliable for
heavy (M) projectiles rather than light particles (m) due
to large mass ratios (M/m � 1) [21,22]. The electron
capture time tC is then obtained as

tC(ρ) =

{
2(R2

C − ρ2)1/2/vP , for ρ ≤ RC ,

0, for ρ ≥ RC ,
(7)

where ρ is the distance between the projectile ion and the
released electron. Then, the semiclassical electron capture
probability from the electron in the 1s ground state of the
target ion becomes

PC =
4ZT e2

�vP

∫
ρ≤RC

d3rT
RC

rT
|Ψ1s(rT )|2 (1 − ρ2/R2

C)1/2.

(8)
Here, the factor (1 − ρ2/R2

C)1/2 can be approximated by
its average value over the integral region since it is a slowly
varying function:

(1− ρ2/R2
C)1/2 =

1
R2

C

∫ RC

0

dρ ρ(1− ρ2/R2
C)1/2 =

1
3
. (9)

Using the 1s ground state wave function Ψ1s(rT ) [23], the
semiclassical electron capture probability by the projectile
ion from the hydrogenic target ion in strongly coupled
plasmas is found to be

PC(b) =
1
6π

ZT e2RC

�vP aZT

G(b, RC), (10)

where the integral function G(b, RC) is represented in the
following form using the cylindrical coordinates (ρ, φ, z):

G(b, RC) =
∫

ρ≤RC

d3rT
exp(−2rT /aZT )

rT
,

=
∫ RC

0

dρ ρ

∫ 2π

0

dφ

∫ ∞

−∞
dz

exp(−2rT (ρ, φ, z)/aZT )
rT (ρ, φ, z)

.

(11)

This integral function G(b, RC) can be evaluated using the
inverse Fourier transformation in the momentum space q
with rT = ρ + z + b:

G(b, RC) =
1

2π2

∫ RC

0

dρ ρ

∫ 2π

0

dφ

∫ ∞

−∞
dz

×
∫

d3q
exp(−iq · (ρ + z + b))

q2 + 4/a2
ZT

,

= 4πRC

∫ ∞

0

dq⊥
J0(q⊥b)J1(q⊥RC)

q2
⊥ + 4/a2

ZT

, (12)

where q⊥ is the perpendicular component of the momen-
tum transfer and Jn the nth-order Bessel function [24].

Fig. 1. The scaled electron capture radius (R̄C) as a function
of the scaled de Broglie wavelength (λ̄) for various values of
the scaled reciprocal Debye length (aΛ). The solid line repre-
sents the electron capture radius for aΛ = 0.01. The dashed
line represents the electron capture radius for aΛ = 0.05. The
dotted line represents the electron capture radius for aΛ = 0.1.

For the sake of simplicity, we assume that ZP = ZT ≡ Z.
Then, the scaled semiclassical electron capture probability
by the projectile ion from the ground state of the hydro-
genic ion in strongly coupled plasmas is found to be

b̄P̄C(b̄, Ē, λ̄, aΛ) =
8R̄C(Ē, λ̄, aΛ)

3Ē1/2
b̄

×
∫ ∞

0

dQ⊥
J0(Q⊥b̄)J1

(
Q⊥R̄C(Ē, λ̄, aΛ)

)
Q2

⊥ + 4
, (13)

where b̄ (≡ b/aZ) is the scaled impact parameter and Q⊥
(≡ q⊥aZ) is the scaled perpendicular momentum trans-
fer. Hence, the collective plasma screening and quantum
effects on the electron capture process in strong cou-
pled plasmas can be found from equation (13) with equa-
tions (4) and (5).

In order to explicitly investigate the quantum and
collective screening effects on the electron capture prob-
ability, we set the collision energy as Ē = 2 since the
Bohr-Lindhard method is known to be reliable for the re-
gion vP > vZ [2,6]. Figure 1 shows the scaled electron
capture radius as a function of the scaled de Broglie wave-
length for various values of the scaled reciprocal Debye
length. Figure 2 represents the three-dimensional plot of
scaled capture radius as a function of the scaled de Broglie
wavelength and the scaled reciprocal Debye length. As we
can see in these figures, the electron capture radius de-
creases with increasing the de Broglie wavelength, i.e.,
increasing the quantum effect. It is also found that the
electron capture radius decreases with decreasing the re-
ciprocal Debye length, i.e., increasing the plasma screen-
ing effect. However, the quantum effects are found to be
more effective than the plasma screening effects. Figure 3
shows the scaled electron capture probability as a func-
tion of the scaled impact parameter for various values of
the scaled de Broglie wavelength. In addition, Figure 4
shows the three-dimensional plot of the scaled electron
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Fig. 2. The three-dimensional plot of scaled capture radius
(SCR) (R̄C) as a function of the scaled de Broglie wave-
length (λ̄) and the scaled reciprocal Debye length (aΛ).

Fig. 3. The scaled electron capture probability (b̄P̄C) as a
function of the scaled impact parameter (b̄) for various values of
the scaled de Broglie wavelength (λ̄) when aΛ = 0.1. The solid
line represents the electron capture probability for λ̄ = 0.5.
The dashed line represents the electron capture probability
for λ̄ = 0.6. The dotted line represents the electron capture
probability for λ̄ = 0.7.

capture probability as a function of the scaled impact pa-
rameter and the scaled de Broglie wavelength. From these
figures, we can find that the maximum position of the elec-
tron capture probability, i.e., the position at which takes
place the electron capture process, is shifted to the core
of the projectile ion with increasing the de Broglie wave-
length. Figure 5 represents the three-dimensional plot of
the scaled electron capture probability as a function of
the scaled de Broglie wavelength and the scaled recipro-
cal Debye length at b̄ = 0.5. From this figure, it can be
also found that the quantum effects on the electron cap-
ture probability are more significant than the collective
plasma screening effects on the electron capture proba-
bility in strongly coupled plasmas. The electron capture
probability can be expressed as the following form in or-

Fig. 4. The three-dimensional plot of the scaled electron cap-
ture probability (SCP) (b̄P̄C) as a function of the scaled impact
parameter (b̄) and the scaled de Broglie wavelength λ̄.

Fig. 5. The three-dimensional plot of the scaled electron
capture probability (SCP) (b̄P̄C) as a function of the scaled
de Broglie wavelength (λ̄) and the scaled reciprocal Debye
length (aΛ) at b̄ = 0.5.

der to investigate the dependence of the electron capture
probability on the projectile charge:

b̃P̃C(Z, b̃, Ẽ, λ̃, ãΛ) =
8Z3R̃C

3Ẽ1/2
b̃

×
∫ ∞

0

dQ̃⊥
J0(Q̃⊥b)J1(Q̃⊥R̃C)

Q̃2
⊥ + 4Z2

, (14)

where R̃C(Z, Ẽ, λ̃, ãΛ) = ln
(
4 −

√
21 − 12F̃

)−1/B̃

,

Ẽ ≡ E/Ry, λ̃ ≡ λ/a0, ãΛ ≡ a0/Λ, Q̃⊥ ≡ q⊥a0,
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Fig. 6. The electron capture probability (b̃P̃C) as a function
of the impact parameter b̃ (≡ b/a0) for Z = 1 when λ̃ = 3,
ãΛ = 0.1, and Ẽ = 0.5.

Fig. 7. The electron capture probability (b̃P̃C) as a function
of the impact parameter b̃ (≡ b/a0) for Z = 2 when λ̃ = 3,
ãΛ = 0.1, and Ẽ = 0.5.

B̃(λ̃, ãΛ) =

√
[1 +

√
1 − (2λ̃ãΛ)2]/(2λ̃2), and

F̃ (Z, Ẽ, λ̃, ãΛ) =

(Ẽ/Z
√

2)λ̃
√

1 − (2λ̃ãΛ)2 +

√
1 −

√
1 − (2λ̃ãΛ)2√

1 +
√

1 − (2λ̃ãΛ)2
. (15)

Figures 6 and 7 show the variation of the electron capture
probability with changing the charge state. As we see in
these figures, the electron capture probability is signifi-
cantly increased with an increase of the charge. Recently,
the charge exchange process was investigated in weakly
coupled classical plasmas [25] using the Bohr-Lindhard
analysis [11] including only the plasma screening effects
since the quantum effects are negligible in weakly coupled
plasmas. However, in strongly coupled semiclassical plas-
mas the quantum effects play important roles as we see
in Figures 1–7. Thus, equations (14) and (15) contain an
important information on quantum effects as well as the

plasma screening effects on electron capture processes in
strong coupled plasmas.

4 Summary and discussions

We investigate the quantum and collective screening ef-
fects on the electron capture processes by projectile ions
from hydrogenic ions in strongly coupled semiclassical
plasmas. The electron capture radius by the projec-
tile ion in strongly coupled plasmas is obtained by the
screened pseudopotential model taking into account both
the plasma screening and quantum effects. The semiclassi-
cal version of the Bohr-Lindhard method is used to obtain
the electron capture probability. The impact-parameter
trajectory analysis is applied to the motion of the projec-
tile ion in order to visualize the electron capture radius
and the capture probability as functions of the impact
parameter, thermal de Broglie wavelength, Debye length,
and collision energy. It is found that the quantum and
plasma screening effects significantly reduce the electron
capture probability as well as the electron capture radius.
It should be noted that the maximum position of the elec-
tron capture probability, i.e., the position at which takes
place the electron capture process, is shifted to the core of
the projectile ion with increasing the thermal de Broglie
wavelength, i.e., increasing the quantum effect. It is also
found that the quantum effects on the electron capture
probability are more significant than the plasma screening
effects on the electron capture probability in strongly cou-
pled plasmas. The electron capture probability is found to
be significantly increased with an increase of the charge.
These results provide useful information on electron cap-
ture processes in strongly coupled semiclassical plasmas.
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